1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
15

-. A 2kg cart moving to the right at 5m/s collides with an 8kg cart at rest. As a

Physics
1 answer:
bulgar [2K]3 years ago
3 0

Answer:

<em>The velocity of the carts after the event is 1 m/s</em>

Explanation:

<u>Law Of Conservation Of Linear Momentum </u>

The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is  

P=mv.  

If we have a system of bodies, then the total momentum is the sum of the individual momentums:

P=m_1v_1+m_2v_2+...+m_nv_n

If a collision occurs and the velocities change to v', the final momentum is:

P'=m_1v'_1+m_2v'_2+...+m_nv'_n

Since the total momentum is conserved, then:

P = P'

In a system of two masses, the equation simplifies to:

m_1v_1+m_2v_2=m_1v'_1+m_2v'_2

If both masses stick together after the collision at a common speed v', then:

m_1v_1+m_2v_2=(m_1+m_2)v'

The common velocity after this situation is:

\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

\displaystyle v'=\frac{2*5+8*0}{2+8}=\frac{10}{10}=1

The velocity of the carts after the event is 1 m/s

You might be interested in
Clear cutting has a similar effect as controlled burning of a forest. <br><br> True<br><br> False
mariarad [96]
<span>Clear cutting has a similar effect as controlled burning of a forest is True.


True </span>
3 0
3 years ago
Read 2 more answers
Which of these is a TRUE statement
dangina [55]

Answer:

Sound travels through solids and liquids at the same speed

Explanation:

Because sound needs a dencer object to travel fast and since both liquid and solids are closer than gas sound travles faster in them.

3 0
3 years ago
Read 2 more answers
In the photoelectric effect, a photon with an energy of 5.3 × 10–19 J strikes an electron in a metal. Of this energy, 3.6 × 10–1
valentina_108 [34]

Answer:

The velocity of the photo electron is 6.11\times 10^5\ m/s.

Explanation:

Given that,

Supplied energy, E_s=5.3\times 10^{-19}\ J

Minimum energy of the electron to escape from the metal, E_e=3.6\times 10^{-19}\ J

We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

5.3\times 10^{-19}\ J=3.6\times 10^{-19}\ J+K\\\\K=5.3\times 10^{-19}-3.6\times 10^{-19}\\\\K=1.7\times 10^{-19}\ J

The formula of kinetic energy is given by :

K=\dfrac{1}{2}mv^2\\\\v=\sqrt{\dfrac{2K}{m}} \\\\v=\sqrt{\dfrac{2\times 1.7\times 10^{-19}}{9.1\times 10^{-31}}} \\\\v=6.11\times 10^5\ m/s

So, the velocity of the photo electron is 6.11\times 10^5\ m/s.

4 0
3 years ago
Two asteroids identical to those above collide at right angles and stick together; i.e, their initial velocities were perpendicu
11111nata11111 [884]

Answer:

velocity = 62.89 m/s  in 58 degree measured from the x-axis

Explanation:

Relevant information:

Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.

Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.

Before collision Momentum of A = 1000 x 100 = $ 10^5$ kg - m/s in the right direction.

Before collision Momentum of B = 2000 x 80 = 1.6 x $ 10^5$  kg - m/s in upward direction.

Mass of System of after collision = 1000 + 2000 = 3000 kg

Now applying the Momentum Conservation, we get

Initial momentum in right direction = final momentum in right direction = $ 10^5$

And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x $ 10^5$

So, $ V_x = \frac{10^5}{3000} $  = $ \frac{100}{3} $  m/s

and $ V_y=\frac{160}{3}$  m/s

Therefore, velocity is = $ \sqrt{V_x^2 + V_y^2} $

                                   = $ \sqrt{(\frac{100}{3})^2 + (\frac{160}{3})^2} $

                                   = 62.89 m/s

And direction is

tan θ = $ \frac{V_y}{V_x}$     = 1.6

therefore, $ \theta = \tan^{-1}1.6 $

                   = $ 58 ^{\circ}$  from x-axis

4 0
3 years ago
The two types of vitamins are fat and water soluble?
lianna [129]
Its true hopefully this helps you.
4 0
3 years ago
Other questions:
  • A weather balloon is inflated to a volume of 27.2 l at a pressure of 753 mmhg and a temperature of 30.9 ∘c. the balloon rises in
    11·1 answer
  • The two days of the year on which neither hemisphere is tilted toward or away from the sun are called
    13·2 answers
  • Why do you think the temperature does not change much during a phase change? If possible, discuss your answer with your classmat
    11·1 answer
  • The 2-Mg truck is traveling at 15 m/s when the brakes on all its wheels are applied, causing it to skid for 10 m before coming t
    6·1 answer
  • How long will the energy in a 1470-kJ (350-kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficienc
    12·1 answer
  • How often would you push someone on a swing to create a frequency of .4 hertz
    12·1 answer
  • (3 points) A disk is spinning freely with angular speed 6.0 rad/s when a second identical disk, initially not spinning, is dropp
    12·1 answer
  • A 62 kg skydiver moving at terminal speed falls 50 m in 1 s. What power is the skydiver expending on the air?
    12·1 answer
  • Giving brainliest!
    8·1 answer
  • Roughly speaking, the radius of an atom is about 10,000 times greater than that of its nucleus. If an atom were magnified so tha
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!