Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
The ionization energy is the minimum amount of energy required to remove the most loosely bound electron of an isolated neutral gaseous atom or molecule.The first ionisation energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. I hope this helps :3
Explanation:
The pH of a weak base falls somewhere between 7 and 10.
This reaction is called decomposition reaction, furthermore it can be said to be decomposition of limestone.
The balanced chemical equation for the reaction is ~
Answer: > >
Explanation:
The order of boiling point depends upon the type of interactions present between the molecules.
Potassium fluoride (KF) is an ionic compound and the opposite ions are held together by strong electrostatic forces.
is a covalent compound and the molecules are held together by weak van der Waals' forces.
Formaldehyde is a polar compound due to presence of polar carbonyl group. Hence dipole-dipole force is present between formaldehyde molecules.
Thus the decreasing order of boiling point is:
> >