Answer:
The correct option is;
4 percent ionic, 96 percent covalent, 222 pm
Explanation:
The parameters given are;
Phosphorus:
Atomic radius = 109 pm
Covalent radius = 106 pm
Ionic radius = 212 pm
Electronegativity of phosphorus = 2.19
Selenium:
Atomic radius = 122 pm
Covalent radius = 116 pm
Ionic radius = 198 pm
Electronegativity of selenium= 2.55
The percentage ionic character of the chemical bond between phosphorus and selenium is given by the relation;
Using Pauling's alternative electronegativity difference method, we have;
![\% \, Ionic \ Character = \left [18\times (\bigtriangleup E.N.)^{1.4} \right ] \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%28%5Cbigtriangleup%20E.N.%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25)
Where:
Δ E.N. = Change in electronegativity = 2.55 - 2.19 = 0.36
Therefore;
![\% \, Ionic \ Character = \left [18\times (0.36)^{1.4} \right ] \% = 4.3 \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%280.36%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25%20%3D%204.3%20%5C%25)
Hence the percentage ionic character = 4.3% ≈ 4%
the percentage covalent character = (100 - 4.3)% = 95.7% ≈ 96%
The bond length for the covalent bond is found adding the covalent radii of both atoms as follows;
The bond length for the covalent bond = 106 pm + 116 pm = 222 pm.
The correct option is therefore, 4 percent ionic, 96 percent covalent, 222 pm.
Answer:
True
Explanation:
According to Aufbau's principle "sublevels with lower energies are filled up before those with higher energies".
Sublevels do not fill up in numerical order but there is a certain manner in which they are filled. The pattern is shown below:
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p e.t.c
We see that the 4s gets filled before the 3d sublevel.
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>
the answer is <em>a} physical and chemical changes</em>