Answer:
2 m/s
Explanation:
Applying the formulae of velocity,
V = d/t............. Equation 1
Where V = Velocity of the body, d = distance, t = time
From the question,
Given: d = 600 m, t = 5 minutes = (5×60) = 300 seconds.
Substitute these values into equation 1
V = 600/300
V = 2 m/s.
Hence the velocity of the body when it travels is 2 m/s
<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:



Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:

<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
![[HI]_{eq}=2x=(2\times 0.079)=0.158M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.079%29%3D0.158M)
![[H_2]_{eq}=(0.1-x)=(0.1-0.079)=0.0210M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D%280.1-x%29%3D%280.1-0.079%29%3D0.0210M)
![[I_2]_{eq}=0.0210M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.0210M)
Putting values in above expression, we get:

Hence, the value of equilibrium constant for the given reaction is 56.61
Explanation:
When there occurs sharing of electrons between two chemically combining atoms then it forms a covalent bond. Generally, a covalent bond is formed between two non-metals.
An ionic bond is defined as the bond formed due to transfer of one or more number of electrons from one atom to another. An ionic bond is always formed between a metal and a non-metal.
Every atom of an element will have orbitals in which electrons are found. These orbitals are known as energy level.
A molecule is defined as the smallest particle present in a substance or atom.
A metallic bond is formed due to mobile valence electrons shared by positive nuclei in a metallic crystal.
Thus, we can conclude that given statements are correctly matched as follows.
1). a chemical bond formed by the electrostatic attraction between ions - ionic bond
2). a chemical bond formed by two electrons that are shared between two atoms - covalent bond
3). the orbitals of an atom where electrons are found - energy level
4). the smallest particle of a covalently bonded substance - molecule
5). a bond characteristic of metals in which mobile valence electrons are shared among positive nuclei in the metallic crystal - metallic bond
Answer:
Lithium hydroxide is a base.
Carbon dioxide is the anhydride of the carbonic acid, H₂CO₃.
Therefore, the reaction awaited is a typical neutralization reaction with the formation of a salt and water.
2LiOH + CO₂ → Li₂CO₃ + H₂O
So, 2*20 = 40 moles of LiOH react with 20 moles of CO₂.
Molar Mass of LiOH = 23.95 g/mol
So, 40 * 23.95 = 958 g
Al2O3 has a higher melting point than Na2O. This is because the ionic bond between Al3+ ions and O2- ions is stronger than that between Na+ and O2-. The charge on the Al3+ ion is larger than that of the Na+ ion