Answer : The one diagram which shows the electron with the highest potential energy is attached below.
Explanation : One can easily find the highest potential energy of the atom just by looking at the diagram, the electron which is from farthest distance from the atomic nucleus will have the highest potential energy in the electron.
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
The options attached to the question above are listed below:
A. Magnetic field.
B. Type of wire.
C. Velocity of the wire.
D. Length of the wire in the field.
ANSWER
The correct option is B.
The factors that determine the induced current in a system are: the number of wires in the coil, the strength of the magnetic field and speed of armature rotation [speed of cutting]. Generally, the induced electromotive force across a conductor is equal to the rate at which magnetic flux is cut by the conductor. The type of wire used does not affect the induced EMF.
Explanation:
the answer and the working out is shown above, hope it helps.