The atomic number for Pb is 82
∴ Pb has 82 protons and 206-82 = 14 protons
The actual mass of Pb nuclei is
=(82 × mass of the proton) + (124 × mass of neutron)
=(82× 1.00728) + (124 × 1.008664) amu
= 207.6713 amu
The mass of lead which is given is 205.9744 amu
∴mass defect is
m = 207.6713 - 205.9744 = 1.6969 amu
=1.6969 × 1.66054 × 10⁻²⁷kg
=2.818 × 10⁻²⁷kg
The binding energy is E = mc²
C is the speed of light in vacuum = 2.9979 × 10⁸m/s
∴ E = 2.532 × 10×⁻¹⁰ J/mol
= 2.532 × 10⁻¹⁰ × 6.023 × 10²³ J/mol
= 1.53811 × 10¹⁴ J/mol
Answer:
He realized he needs to have the upper body and lower body held in place and needed the buckle as far down beside the person's hip so it could hold the body properly
Explanation: ''I realized both the upper and lower body must be held securely in place with one strap across the chest and one across the hips,'' Mr. Bohlin once said. ''The belt also needed an immovable anchorage point for the buckle as far down beside the occupant's hip, so it could hold the body properly during a collision.
Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.
The value of Triangle G is A) Less than 0.
Answer:
The oxidation number of C (carbon) is +4
Explanation: