Answer:
See Explanation
Explanation:
Let us consider the first two reactions, the initial concentration of CO was held constant and the concentration of Hbn was doubled.
2.68 * 10^-3/1.34 * 10^-3 = 6.24 * 10^-4/3.12 * 10^-4
2^1 = 2^1
The rate of reaction is first order with respect to Hbn
Let us consider the third and fourth reactions. The concentration of Hbn is held constant and that of CO was tripled.
1.5 * 10^-3/5 * 10^-4 = 1.872 * 10^-3/6.24 * 10^-4
3^1 = 3^1
The reaction is also first order with respect to CO
b) The overall order of reaction is 1 + 1=2
c) The rate equation is;
Rate = k [CO] [Hbn]
d) 3.12 * 10^-4 = k [5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4 /[5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4/6.7 * 10^-7
k = 4.7 * 10^2 mmol-1 L s-1
e) The reaction occurs in one step because;
1) The rate law agrees with the experimental data.
2) The sum of the order of reaction of each specie in the rate law gives the overall order of reaction.
Answer:
brittle is not a characteristic of metals
Metallic property also rises with increasing atomic radius. Metallic character reduces with an increase in the amount of outer electrons.
<h3>What is
atomic radius?</h3>
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. The atomic radius is often measured in a chemically linked condition because it is difficult to isolate individual atoms to measure their radii separately. However, theoretical computations are easier when considering isolated atoms.
To learn more about atomic radius from the given link:
brainly.com/question/13607061
#SPJ4
The answer is A
In approximately 5 billion years, the sun will begin the helium-burning process, turning into a red giant star. When it expands, its outer layers will consume Mercury and Venus, and reach Earth.