Answer:
Newtons first law states that:
<em>If</em><em> </em><em>a</em><em> </em><em>body</em><em> </em><em>i</em><em>s</em><em> </em><em>in</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em>,</em><em> </em><em>it</em><em> </em><em>remains</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>at</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em> </em><em>with</em><em> </em><em>constant</em><em> </em><em>speed</em><em> </em><em>until</em><em> </em><em>and</em><em> </em><em>unless</em><em> </em><em>and</em><em> </em><em>external</em><em> </em><em>unbalanced</em><em> </em><em>force</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>it</em><em>.</em>
<em>'</em><em>This</em><em> </em><em>law</em><em> </em><em>i</em><em>s</em><em> </em><em>also</em><em> </em><em>known</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>Inertia</em><em>.</em><em>'</em>
21. light changes its direction when travelling through a new medium because denser mediums have a higher angle of refraction.
Force , F = ma
F = m(v - u)/t
Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.
m= 1.2*10³ kg, u = 10 m/s, v = 20 m/s, t = 5s
F = 1.2*10³(20 - 10)/5
F = 2.4*10³ N = 2400 N
Answer:
4.2 x 10⁷N
Explanation:
Given parameters:
Charge on ball:
q₁ = 3C
q₂ = 14C
Distance between balls = 9000m
Unknown:
Force acting on the two balls
Solution:
The force experienced by the two charges is given by coulombs law. It is mathematically expressed as;
F = 
where k = 9 x 10⁹Nm²/C²
q is the charges
r is the distance
Input the variables and solve;
F =
= 4.2 x 10⁷N
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N