Answer:
13.33 or 13 1/3m/s (meters per second)
Explanation:
In physics, we use the basic units of meters and seconds. So first convert (km) into meters (m) and also hours and minutes into seconds (s). We end up with 120000m and 9000s. Then divide the 120000m by the 9000s and you end up with 13.33 or 13 1/3 m/s.
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light. When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight.
Recall the equation for magnetic force:
F = qv x B *x is cross product, not separate variable!
If the magnetic field points towards N and you throw E, then the magnetic force would point up, or out of the page. Use the right-hand rule. You point your finger towards the direction of the object, and curl your finger to the magnetic field. Your thumb is the direction of the magnetic force.
Hope this helps!
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.