Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
(1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
Solving for a:

Now with the acceleration we can use the Galileo's kinematic equation:
(2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:

Solving for Vf


¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?
Input work = 9.63×10³ J.
Output work = 3.0×10³ J
By definition,
Efficiency = (Output work)/(Input work)
= (3.0×10³)/(9.63×10³)
= 0.31 = 31%
Answer: 31%
40 dB is 20 dB more power than 20 dB is. 20 dB more means 100 times as much.
Answer:
0.64 m
Explanation:
The first thing is calculate the center of mass of the system.

now multiplying every coordinate x by the mass of each object (romeo, juliet and the boat) and dividing all by the total mass taking by reference the position of juliet.

X_cm = 1.4589 m
When the forces involved are internals, the center of mass don't change
After the movement the center of mass remains in the same distance from the shore, but change relative to the rear of the boat.

X_cm= 2.10 m
this displacement is how the boat move toward the shore.
2.10-1.46= 0.64 m