The initial kinetic energy of the boat and its rider is

After Sam stops it, the final kinetic energy of the boat+rider is

because its final velocity is zero.
For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:

where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.
If a particle undergoes simple harmonic motion with an amplitude of 0.21 meters, this means that the maximum displacement of the particle from its resting position is 0.21. For one period, it traveled from its starting position which is twice the amplitude and then back to its original position which is another distance that is twice the amplitude as well. Therefore, the total distance it traveled is 2*amplitude + 2*amplitude = 2*0.21 + 2*0.21 = 0.42 + 0.42 = 0.84 meters.
<u>Answer:</u>
<em>The initial distance between the trains is 1450 m.
</em>
<u>Explanation:</u>
In the question two trains are of equal length 400 m and moves at a uniform speed of 72 km/h. train A is moving ahead of train B. If the train B has to overtake train A it should accelerate.
Train B’s acceleration is
and it accelerated for 50 seconds.
<em>
</em>
<em>t=50 s
</em>
<em>initial speed u=72km/h
</em>
<em>we have to convert this speed into m/s </em>
<em>
</em>
<em>Distance covered in accelerating phase
</em>
<em>
</em>
<em>
</em>
If a train is just behind another, the distance covered by the train located behind during overtaking phase will be equal to the sum of the lengths of the trains.
<em>Here length of train A+length of train
</em>
<em>Hence the initial distance between the trains =
</em>
Explanation:
a. Average speed = distance / time
= 100 m / 70 s
= 1.43 m/s
b. Average displacement = displacement / time
= 0 m / 70 s
= 0 m/s
Distance is the length of the path traveled. Displacement is the difference between the final position and initial position.