Answer:
2.04
Step-by-step explanation:
9514 1404 393
Answer:
- parallel: y = 4x -6
- perpendicular: y = -1/4x +27/4
Step-by-step explanation:
If we want the new line to be written in slope-intercept form, we need to find the new value of the y-intercept. The equation of the line is ...
y = mx +b . . . . . . . for slope m and y-intercept b
Solving for b gives ...
b = y -mx . . . . . . . subtract mx from both sides.
The values of x and y come from the point we want the line to pass through. The value of m will be the same for the parallel line as for the given line: 4. For the perpendicular line, it will be the opposite reciprocal of this: -1/4.
<u>Parallel line</u>
b = 6 -4(3) = 6 -12 = -6
y = 4x -6
Perpendicular line
b = 6 -(-1/4)(3) = 6 +3/4 = 27/4
y = -1/4x +27/4
Answer:
a) P=0.558
b) P=0.021
Step-by-step explanation:
We can model this random variable as a Poisson distribution with parameter λ=1/500*2000=4.
The approximate distribution of the number who carry this gene in a sample of 2000 individuals is:
![P(x=k)=\frac{\lambda^ke^{-\lambda}}{k!} =\frac{4^ke^{-4}}{k!}](https://tex.z-dn.net/?f=P%28x%3Dk%29%3D%5Cfrac%7B%5Clambda%5Eke%5E%7B-%5Clambda%7D%7D%7Bk%21%7D%20%3D%5Cfrac%7B4%5Eke%5E%7B-4%7D%7D%7Bk%21%7D)
a) We can calculate that the approximate probability that between 4 and 9 (inclusive) as:
![P(4\leq x\leq 9)=\sum_{k=4}^9P(k)\\\\\\ P(4)=4^{4} \cdot e^{-4}/4!=256*0.0183/24=0.195\\\\P(5)=4^{5} \cdot e^{-4}/5!=1024*0.0183/120=0.156\\\\P(6)=4^{6} \cdot e^{-4}/6!=4096*0.0183/720=0.104\\\\P(7)=4^{7} \cdot e^{-4}/7!=16384*0.0183/5040=0.06\\\\P(8)=4^{8} \cdot e^{-4}/8!=65536*0.0183/40320=0.03\\\\P(9)=4^{9} \cdot e^{-4}/9!=262144*0.0183/362880=0.013\\\\\\](https://tex.z-dn.net/?f=P%284%5Cleq%20x%5Cleq%209%29%3D%5Csum_%7Bk%3D4%7D%5E9P%28k%29%5C%5C%5C%5C%5C%5C%20P%284%29%3D4%5E%7B4%7D%20%5Ccdot%20e%5E%7B-4%7D%2F4%21%3D256%2A0.0183%2F24%3D0.195%5C%5C%5C%5CP%285%29%3D4%5E%7B5%7D%20%5Ccdot%20e%5E%7B-4%7D%2F5%21%3D1024%2A0.0183%2F120%3D0.156%5C%5C%5C%5CP%286%29%3D4%5E%7B6%7D%20%5Ccdot%20e%5E%7B-4%7D%2F6%21%3D4096%2A0.0183%2F720%3D0.104%5C%5C%5C%5CP%287%29%3D4%5E%7B7%7D%20%5Ccdot%20e%5E%7B-4%7D%2F7%21%3D16384%2A0.0183%2F5040%3D0.06%5C%5C%5C%5CP%288%29%3D4%5E%7B8%7D%20%5Ccdot%20e%5E%7B-4%7D%2F8%21%3D65536%2A0.0183%2F40320%3D0.03%5C%5C%5C%5CP%289%29%3D4%5E%7B9%7D%20%5Ccdot%20e%5E%7B-4%7D%2F9%21%3D262144%2A0.0183%2F362880%3D0.013%5C%5C%5C%5C%5C%5C)
![P(4\leq x\leq 9)=\sum_{k=4}^9P(k)=0.195+0.156+0.104+0.060+0.030+0.013=0.558](https://tex.z-dn.net/?f=P%284%5Cleq%20x%5Cleq%209%29%3D%5Csum_%7Bk%3D4%7D%5E9P%28k%29%3D0.195%2B0.156%2B0.104%2B0.060%2B0.030%2B0.013%3D0.558)
b) The approximate probability that at least 9 carry the gene is:
![P(x\geq9)=1-P(x\leq 8)\\\\\\](https://tex.z-dn.net/?f=P%28x%5Cgeq9%29%3D1-P%28x%5Cleq%208%29%5C%5C%5C%5C%5C%5C)
![P(0)=4^{0} \cdot e^{-4}/0!=1*0.0183/1=0.018\\\\P(1)=4^{1} \cdot e^{-4}/1!=4*0.0183/1=0.073\\\\P(2)=4^{2} \cdot e^{-4}/2!=16*0.0183/2=0.147\\\\P(3)=4^{3} \cdot e^{-4}/3!=64*0.0183/6=0.195\\\\P(4)=4^{4} \cdot e^{-4}/4!=256*0.0183/24=0.195\\\\P(5)=4^{5} \cdot e^{-4}/5!=1024*0.0183/120=0.156\\\\P(6)=4^{6} \cdot e^{-4}/6!=4096*0.0183/720=0.104\\\\P(7)=4^{7} \cdot e^{-4}/7!=16384*0.0183/5040=0.06\\\\P(8)=4^{8} \cdot e^{-4}/8!=65536*0.0183/40320=0.03\\\\](https://tex.z-dn.net/?f=P%280%29%3D4%5E%7B0%7D%20%5Ccdot%20e%5E%7B-4%7D%2F0%21%3D1%2A0.0183%2F1%3D0.018%5C%5C%5C%5CP%281%29%3D4%5E%7B1%7D%20%5Ccdot%20e%5E%7B-4%7D%2F1%21%3D4%2A0.0183%2F1%3D0.073%5C%5C%5C%5CP%282%29%3D4%5E%7B2%7D%20%5Ccdot%20e%5E%7B-4%7D%2F2%21%3D16%2A0.0183%2F2%3D0.147%5C%5C%5C%5CP%283%29%3D4%5E%7B3%7D%20%5Ccdot%20e%5E%7B-4%7D%2F3%21%3D64%2A0.0183%2F6%3D0.195%5C%5C%5C%5CP%284%29%3D4%5E%7B4%7D%20%5Ccdot%20e%5E%7B-4%7D%2F4%21%3D256%2A0.0183%2F24%3D0.195%5C%5C%5C%5CP%285%29%3D4%5E%7B5%7D%20%5Ccdot%20e%5E%7B-4%7D%2F5%21%3D1024%2A0.0183%2F120%3D0.156%5C%5C%5C%5CP%286%29%3D4%5E%7B6%7D%20%5Ccdot%20e%5E%7B-4%7D%2F6%21%3D4096%2A0.0183%2F720%3D0.104%5C%5C%5C%5CP%287%29%3D4%5E%7B7%7D%20%5Ccdot%20e%5E%7B-4%7D%2F7%21%3D16384%2A0.0183%2F5040%3D0.06%5C%5C%5C%5CP%288%29%3D4%5E%7B8%7D%20%5Ccdot%20e%5E%7B-4%7D%2F8%21%3D65536%2A0.0183%2F40320%3D0.03%5C%5C%5C%5C)
![P(x\geq9)=1-P(x\leq 8)\\\\P(x\geq9)=1-(0.018+0.073+0.147+0.195+0.195+0.156+0.104+0.060+0.030)\\\\P(x\geq9)=1-0.979=0.021](https://tex.z-dn.net/?f=P%28x%5Cgeq9%29%3D1-P%28x%5Cleq%208%29%5C%5C%5C%5CP%28x%5Cgeq9%29%3D1-%280.018%2B0.073%2B0.147%2B0.195%2B0.195%2B0.156%2B0.104%2B0.060%2B0.030%29%5C%5C%5C%5CP%28x%5Cgeq9%29%3D1-0.979%3D0.021)
The remaining area is 20% of the previous area.
Hope this Helps!
the answer is true. if you have square with 4 cm on all sides and double it, it will become 8 cm on all sides. the first square has a perimeter of 16 and the second square has a perimeter of 32. therefore the perimeter doubles.