Answer:
Stars emit colors of many different wavelengths, but the wavelength of light where a star's emission is concentrated is related to the star's temperature - the hotter the star, the more blue it is; the cooler the star, the more red it is
Answer:
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Explanation:
Since Juan is closer to the center and Kuri is away from the center so we can say that Juan will move smaller distance in one complete revolution
As we know that the distance moved in one revolution is given as

also the time period of revolution for both will remain same as they move with the time period of carousel
Now we can say that the speed is given as

so Juan will have less tangential speed. so correct answer will be
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
Answer:
The PROTONS in the can attract to the negatively charged object, so then the can becomes polarized and the ELECTRONS in the can attract the positively charged object.
Explanation: