The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
The answer is False. Simple machines are divided into three main categories, and not two. They are Levers, inclined planes and Pulleys. <span>These three simple machines all change force in such a way that it makes it easier for us to move an object. </span>
The answer is A. waterfall
To be considered as an engine , it should be a Man-made objects that could be used to produce power that creates motions.
From all the options above could be used to produce such power, but the waterfall is not made by mandkind
Solution :
Given :
Wavelength of the thin beam of light, λ = 50 μm
Distance of the screen from the slit, D = 3.00 m
Width of the fringe, Δy = ±8.24 mm
Therefore, width of the slit is given by :


= 0.000018203 m
= 0.0182 mm
= 0.018 mm
The intensity of light is given by :
, where 


Now, 
= 0.1854
≈ 0.18


= 2 x0.81
