The surface area is greater with the crushed solid so more of the material is exposed to the gas allowing more reactions
The complete reaction along with intermediates is given below, with each step highlighted in different color.
Step 1: In this step an acidic proton at alpha position is abstracted from lactone moiety and corresponding enolate is formed, which is resonance stabilized. Both structures are shown. In this case LDA (<span>Lithium diisopropylamide) acts as a base.
</span>
Step 2: The enolate formed attacks on Methyl Iodide, as Iodide being greater in size is a good leaving group and alpha methyl moiety is generated.
Step 3: This step is acid catalyzed Bromination. Bromine is added at alpha position.
Step 4: This is elimination reaction and is according to <span>Hofmann's Rule. Here less substituted alkene is generated.</span>
Answer:
8/ 13
Explanation:
.................................
The heat absorbed to raise temperature : Q = 31350 J
<h3>Further explanation
</h3>
Given
m = mass = 150 g
Δt = Temperature difference : 50 °C
Required
Heat absorbed
Solution
Heat can be formulated
<em>
Q = m.c.Δt
</em>
The specific heat of water = c = 4.18 J/g °C
Input the value :
Q = 150 x 4.18 x 50
Q = 31350 J
I think you were doing it right. Just find something in your kitchen and google the chemical formula. And from that you can see the elements in it. For example:
Salt, NaCl, Sodium and Chlorine.
Baking Soda, NaHCO3, Sodium, Hydrogen, Carbon and Oxygen.
Vinegar, CH3COOH, Carbon, Hydrogen and Oxygen