We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
<u>distillation</u> is the method used to separate water from a potassium iodine solution
Explanation:
hope it helps !!
<h3><u>Answer;</u></h3>
Phloem
<h3><u>Explanation;</u></h3>
- <u>Club moss</u> plant belongs to the the family Lycopodiaceae, Lycophyte includes any spore-bearing vascular plant.
- <u>Liverworts</u> on the other hand are bryophytes which belongs to the division bryophyta. Bryophytes are small, non-vascular plants which includes mosses, hornworts and liverworts.
- <em><u>Vascular plants contain vascular tissues which play an important role of transportation in plants. </u></em>The major vascular tissues are phloem and xylem. <em><u>Non-vascular plants</u></em> on the other hand lacks the vascular tissues for transportation of substances.
The volume of a 200 g sample of gold is 9.76 cm³
<u><em> calculation</em></u>
volume = mass /density
mass = 200 g
volume = 20.5 g/Cm³
volume is therefore = 200g / 20.5 g/cm³ = 9.76 cm³
Two electron pairs is the answer