Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles

Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
Answer is: volume will be 6,7 L.
Boyle's Law: the pressure volume law - <span> volume of a given amount of gas held varies inversely with the applied pressure when the temperature and mass are constant.
p</span>₁V₁ = p₂V₂.
90 kPa · 5 L = 67 kPa · V₂.
V₂ = 90 kPa · 5 L / 67 kPa.
V₂ = 6,7 L, but same amount of oxygen.
Answer:
Temperature
Explanation:
Here the factor that Elle is controlling is the temperature. So temperature here is the independent variable and the dependent variable is the rate of evaporation of water. Independent variable is controlled during the experiment setup and the outcome of the dependent variable depends on the independent variable.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The mass of solid lead would displace exactly 234.6 liters of water should be <span>2,674,440</span>
All of them are compounds.