The answer is b since on a it says H2 but on the right side there is no H idk if you forgot to put H there so im guessing b. Have a good day
Answer: 8.691 mols of CO₂
Explanation:
To find the number of moles in a given grams, you want to use the molar mass.
Let's first find the molar mass of CO₂.
Carbon's molar mass is 12.011 g/mol
Oxygen's molar mass is 15.999 g/mol
To find molar mass of CO₂, we want to add up the molar mass of carbon and oxygen. Remember, there are 2 Oxygens so we need to mulitply that by 2.
12.011+2(15.999)=44.009 g/mol
Now that we have molar mass, we can convert 382.5 g to mols.

There are about 8.691 mols of CO₂.
Picoliter is a unit of measurement for liquids.
One picoliter = 1×10⁻⁹ mililiters
So:
19 mL ---- x pL
1×10⁻⁹ mL ---- 1 pL
1×10⁻⁹x = 19
x = 1,9 × 10¹⁰ pL
or 19,000,000,000 pL
Answer: 1.9 × 10¹⁰ pL
I believe the correct answer from the choices listed above is the second option. The pair of elements that is most likely to chemically combine and form ionic bonds would be <span>lithium and chlorine. Lithium is metal and chlorine is nonmetal which as a compound forms ionic bonds. Hope this answers the question.</span>
The first step to answering this item is to convert the given temperatures in °F to °C through the equation,
°C = (°F - 32)(5/9)
initial temperature: 72°F
°C = (72 - 32)(5/9) = 22.22°C
final temperature: 145°F
°C = (145 - 32)(5/9) = 62.78°C
Substituting to the equation,
H = mcpdT
H = (43 g)(0.903 J/g°C)(62.78 - 22.22)
H = 1574.82 J
<em>Answer: 1574.82 J</em>