Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
Answer:
Explanation:
Given that:
The flow rate Q = 0.3 m³/s
Volume (V) = 200 m³
Initial concentration
= 2.00 ms/l
reaction rate K = 5.09 hr⁻¹
Recall that:







where;







Thus; the concentration of species in the reactant = 102.98 mg/l
b). If the plug flow reactor has the same efficiency as CSTR, Then:
![t _{PFR} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=t%20_%7BPFR%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{5.09} \Big [ In ( \dfrac{200}{102.96}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B5.09%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7B200%7D%7B102.96%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} =0.196 \Big [ In ( 1.942) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D0.196%20%5CBig%20%5B%20In%20%28%201.942%29%20%5CBig%20%5D)





The volume of the PFR is ≅ 140 m³
We are given the following equation:
y = y0 e^-0.0001216 t
where y = 1/5 y0, y0 is the original amount
So solving for time t:
1/5 y0= y0 e^-0.0001216 t
t = 13,235.51 years
So the human died about 13235.5 years ago