Answer:
<em>a= In scientific notation</em>
6.96×10⁵ Km
<em>b =In expanded notation</em>
0.00019 mm
Explanation:
Given data:
Radius of sun = 696000 Km
size of bacterial cell = 1.9 ×10⁻⁴ mm
Radius of sun in scientific notation = ?
Size of bacterial cell in expanded notation = ?
Solution:
Radius of sun:
696000 Km
<em>In scientific notation</em>
6.96×10⁵ Km
Size of bacterial cell:
1.9 ×10⁻⁴ mm
<em>In expanded notation</em>
1.9/ 10000 = 0.00019 mm
Answer:
The answer to your question is below
Explanation:
When we have the number of an element followed by a number, that number is the atomic mass.
Atomic mass is the number of protons plus neutrons.
Protons Neutrons
Carbon-13 6 13 - 6 = 7
Chromium-51 24 51- 24 = 27
Strontium-88 38 88 - 38 = 50
Boron-10 5 10 - 5 = 5
Answer:
Copper (I) hydroxide
Explanation:
Copper (I) hydroxide is a chemical compound with the chemical formula of CuOH. One copper atom (Cu), one oxygen atom (O), and one hydrogen atom (H.)
Answer:
2.0x10¹⁷ Hz is the frequency of the X-ray
Explanation:
We can find the frequency of a wave of energy from the wavelenght and its speed using the formula:
v = λƒ
<em>Where v is speed (For electromagnetic radiation = 3.0x10⁸m/s)</em>
<em>λ is the wavelength in meters = 1.5x10⁻⁹m</em>
<em>And f is the frequency in s⁻¹ = Hz</em>
<em />
Replacing:
3.0x10⁸m/s = 1.5x10⁻⁹m*ƒ
3.0x10⁸m/s / 1.5x10⁻⁹m = f
f =
<h3>2.0x10¹⁷ Hz is the frequency of the X-ray</h3>
<em />
Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.