Answer:
The boiling point elevation is 3.53 °C
Explanation:
∆Tb = Kb × m
∆Tb is the boiling point elevation of the solution
Kb is the molal boiling point elevation constant of CCl4 = 5.03 °C/m
m is the molality of the solution is given by moles of solute (C9H8O) divided by mass of solvent (CCl4) in kilogram
Moles of solute = mass/MW =
mass = 92.7 mg = 92.7/1000 = 0.0927 g
MW = 132 g/mol
Moles of solute = 0.0927/132 = 7.02×10^-4 mol
Mass of solvent = 1 g = 1/1000 = 0.001 kg
m = 7.02×10^-4 mol ÷ 0.001 kg = 0.702 mol/kg
∆Tb = 5.03 × 0.702 = 3.53 °C (to 2 decimal places)
Answer:
its false ...............
Covalent bonds are formed when electrons are shared between elements that are nonmetals. The ammonium ion, NH+4 , would have covalent bonds because both nitrogen and hydrogen are nonmetals. ... So, the bond between this particular hydrogen atom and the central nitrogen is a dative covalent bond.
Answer is: the freezing point is 1.63°C and boiling point is 82.01°C.<span>.
1) n(</span><span>nonelectrolyte solute) = 0.656 mol.
</span>m(C₆H₆ - benzene) = 869 g ÷ 1000 g/kg.
m(C₆H₆) = 0.869 kg.<span>
b(solution) = n(</span>nonelectrolyte solute) ÷ m(C₆H₆).<span>
b(solution) = 0.656 mol ÷ 0.869 kg.
b(solution) = 0.754 mol/kg.
2) ΔT = Kf(benzene) · b(solution).
ΔT = 5.12°C/m · 0.754 m.
ΔT = 3.865°C.
Tf = 5.50°C - 3.865°C.
Tf = 1.63°C.
</span>
3) ΔTb = Kb(benzene) · b(solution).
ΔTb = 2.53°C/m · 0.754 m.
ΔTb = 1.91°C.
Tb = 80.1°C + 1.91°C.
Tb = 82.01°C.<span>
</span>