Answer:
Q1 = +2.50 x 10^-5C and Q2 = -2.50 x 10^-5C, r = 0.50m, F=?
Using Coulomb's law:
F = 1/(4πE) x Q1 x Q2/ r^2
Where
k= 1/(4πE) = 9 x 10^9Nm2/C2
Therefore,
F = 9x 10^9 x 2.50 x 10^-5 x2.50 x
10^-5/. ( 0.5)^2
F= 5.625/ 0.25
F= 22.5N approximately
F= 23N.
To find the direction of the force: since Q1 is positive and Q2 is negative, the force along Q1 and Q2 is force of attraction.
Hence To = 23N, attractive. C ans.
Thanks.
Answer:
H = 45 m
Explanation:
First we find the launch velocity of the ball by using the following formula:
v₀ = √(v₀ₓ² + v₀y²)
where,
v₀ = launching velocity = ?
v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s
v₀y = Vertical Component of Launch Velocity = 30 m/s
Therefore,
v₀ = √[(15 m/s)² + (30 m/s)²]
v₀ = 33.54 m/s
Now, we find the launch angle of the ball by using the following formula:
θ = tan⁻¹ (v₀y/v₀ₓ)
θ = tan⁻¹ (30/15)
θ = tan⁻¹ (2)
θ = 63.43°
Now, the maximum height attained by the ball is given by the formula:
H = (v₀² Sin² θ)/2g
H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)
<u>H = 45 m</u>
Answer:
<u><em>on flow properties and free-flowing and cohesive. </em></u>
Explanation:
the power Free flowing powders do not cling together, as cohesive powders stick to each other and form that do not disperse well during mixing
Answer:
The sun.
Explanation:
The sun provides energy for living organisms, and it drives our planet’s weather and climate patterns.
Remember, Earth is spherical and the energy from the sun does not reach all areas with equal intensity. Areas exposed to the sun are directly on the sun’s rays (i.e. those nearest to the equator) and hence, receive greater solar input. In contrast, those in higher latitudes receive sunlight that is spread over a larger area and that has taken a longer path through the atmosphere. As a result, these higher latitudes receive less solar energy.
Also, ocean circulation and precipitation are all factors of weather
To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 