Answer:
b) Projectile MOTION
Explanation:
SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line
In this type of motion particle must be in straight line motion
So here we can say
a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM
b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM
d) Spring Motion : it is a straight line to and fro motion so it is also a SHM
So correct answer will be
b) Projectile MOTION
The first thing you should know to solve this problem is the conversion of pounds to kilograms:
1lb = 0.45 Kg
We can solve this problem by a simple rule of three
1lb ---> 0.45Kg
125lb ---> x
Clearing x we have:
x = ((125) / (1)) * (0.45) = 56.25 Kg.
Answer
her mass expressed in kilograms is 56.25 Kg.
Answer:
Yes
Explanation:
The farther something is from the center of mass of an object such as a planet, the lower the gravitational force between them
F = GMm/d²
Answer:
It will be cut in half
Explanation:
The diffraction of a slit is given by the formula
a sin θ = m where
a = width of the slit,
λ = wavelength and
m = integer that determines the order of diffraction.
Next we divide both sides by a, we have
sin θ = m λ / a
Also, recall that
a’ = 2 a
Then we substitute in the previous equation
2asin θ' = m λ, if divide by 2a, we have
sin θ' = (m λ / 2a).
Now again, from the first equation, we said that sin θ = m λ / a, so we substitute
sin θ ’= sin θ / 2
Then we use trigonometry to find the width, we say
tan θ = y / L
Since the angle is small, we then have
tan θ = sin θ / cos θ
tan θ = sin θ, this then means that
sin θ = y / L
we will then substitute
y’ / L = y/L 1/2
y' = y / 2
this means that when the slit width is doubled the pattern width will then be halved
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143