Answer:
[OH-] = 1.0 x 10-10 M
Explanation:
The acidity of a solution can be determined directly from the concentration of the hydrogen ions and indirectly from the concentrations of the hydroxide ions.
Generally, for a neutral solution we have;
[H3O+] = [OH-] = 1.0 x 10-7 M
For an acidic solution;
[H3O+] > 1.0 x 10-7 M
[OH-] < 1.0 x 10-7 M
Comparing the options the correct option is;
[OH-] = 1.0 x 10-10 M
The blue color of copper (ii) sulfate will change to green, yellow, orange ,red and then a dark red or brown.
Glucose is a reducing sugar; reducing sugars are sugar that forms an aldehyde or ketone in the presence of an alkaline solution. Reducing sugars reduce the blue copper sulfate from the Benedict's solution to a red brown copper sulfide; which is seen as the precipitate and is responsible for the color change.
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
The number of Ml of a 0.40 %w/v solution of ,nalorphine that must be injected to obtain a dose of 1.5 mg is calculated as below
since M/v% is mass of solute in grams per 100 ml
convert Mg to g
1 g = 1000 mg what about 1.5 mg =? grams
= 1.5 /1000 = 0.0015 grams
volume is therefore = 100 ( mass/ M/v%)
= 100 x( 0.0015/ 0.4) = 0.375 ML
D. Sodium hydroxide aka naOH