Answer: 56.44°
Explanation:
<u>Given:</u>
- Let u represent the current speed of the plane, <u>1.2 Mach</u>
<em>Converting to SI Units (m/s):</em>
= (1.2 mach)(340 ms^-1 / 1 Mach)
u = 408 m/s
- Speed of sound in air, v = 340 m/s
<u>Find:</u>
- Angle the wave front of the shock wave relative to the plane's direction of motion, θ
We have, sinθ = speed of sound / speed of object
sinθ = v / u
θ = sin^-1 (v / u)
= sin^-1 (340 / 408)
θ = 56.44°
Answer:
A figure skater doing a double axle
The swing of a baseball bat
The leverage on a hockey stick
hope it helps
Answer: find the answer in the explanation
Explanation:
The capillarity of water molecules is different from the mercury molecules.
What is capillarity ?
This is the tendency of a liquid substance to rise in a capillary tube.
Molecules water rises up in a harrow tubes because of the force of adhesion between the water molecules and the tube molecules is greater than the force of cohesion between the water molecules. This helps water to wet the tube and rise. While mercury which is also a liquid falls in a narrow tubes to level below the outside surface because the force of cohesion between the mercury molecules is greater than the force of adhesion between the mercury molecules and the tube molecules. Mercury does not wet.
Your answer would be D.
If an object has mass, it has gravity, and the more mass it has, the stronger its gravity. During the formation of planets, essentially, various matter and elements pulled and fused together (because of the gravity), forming planetesimals.