Answer:
-58.876 kJ
Explanation:
m = mass of air = 1 kg
T₁ = Initial temperature = 15°C
T₂ = Final temperature = 97°C
Cp = Specific heat at constant pressure = 1.005 kJ/kgk
Cv = Specific heat at constant volume = 0.718 kJ/kgk
W = Work done
Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)
ΔU = Change in internal energy
Q = W+ΔU
⇒Q = W+mCvΔT
⇒0 = W+mCvΔT
⇒W = -mCvΔT
⇒Q = -1×0.718×(97-15)
⇒Q = -58.716 kJ
the answer should be:
When the buoyant force is equal to the force of gravity
Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.
V = IR
By completing the equation, i found that the total power equation is : 4.8,
Which means that it's not exceed the power rating.
So i believe the answer would be : The string will remain lit
hope this helps