Answer:
-2.3 × 10^-9 Coulombs(C).
Explanation:
So, we are given the following data or information or parameters that is going to help us to solve the problem effectively and efficiently;
=> " the shuttle's potential is typically changed by -1.4 V during one revolution. "
=> " Assuming the shuttle is a conducting sphere of radius 15 m".
So, in order to estimate the value for the charge we will be making use of the equation below:
Charge, C =( radius × voltage or potential difference) ÷ Coulomb's law constant.
Note that the value of Coulomb's law constant = 9 x 10^9 Nm^2 / C^2.
So, charge = { 15 × (- 1.4)} / 9 x 10^9 Nm^2 / C^2.
= -2.3 × 10^-9 Coulombs(C).
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant

∴ Angle by which the second order line appear is 43.16°
Answer:
the average speed of the car is 170 mph.
Explanation:
Given;
initial speed, u = 70 mph
time of motion, t₁ = 3 hours
final speed, v = 20 mph
time of motion, t₂ = 2 hours
The average speed of the car is calculated as;

Therefore, the average speed of the car is 170 mph.
<h2>
Option 3, 216 m is the correct answer.</h2>
Explanation:
We have initial velocity, u = 15 m/s
Time, t = 12 seconds
Final velocity, v = 21 m/s
We have equation of motion v = u + at
Substituting
21 = 15 + a x 12
a = 0.5 m/s²
Now we have equation of motion v² = u² + 2as
21² = 15² + 2 x 0.5 x s
s = 216 m
Displacement = 216 m
Option 3, 216 m is the correct answer.
Answer:
2.89 x 10^6 N
Explanation:
The explanation is shown in the picture attached