Answer:
Compared to High angle, relatively less presence of Crystallographic misalignment in grain boundary for small angle is reason behind its less effectiveness in interfering with slip process
Explanation:
Because of relatively much less presence of crystallographic misalignment in grain boundary for small angle, small grain boundaries are not as effective in compare to high angle in interfering with slip process
Less crystallographic misalignment in grain boundary causes not much change in slip direction and therefore interference to slip process is minimal.
Answer: 11%
Explanation:
Given that
X = ab^2/C. Calculate percentage error in X, when percentage error in a,b,c are 4,2 and 3 respectively.
Percentage error of b = 2%
Percentage error of b^2 = 2 × 2 = 4
When you are calculating for percentage error that involves multiplication and division, you will always add up the percentage error values.
Percentage error of X will be;
Percentage error of a + percentage error of b^2 + percentage error of c
Substitute for all these values
4 + 4 + 3 = 11%
Therefore, percentage error of X is 11%
If a cell is placed in a hypertonic solution, water will leave the cell, and the cell will shrink. In an isotonic environment, there is no net water movement, so there is no change in the size of the cell. When a cell is placed in a hypotonic environment, water will enter the cell, and the cell will swell.
Explanation:
a. The velocity of the wind as a vector in component form will be represented as v vector:

b.The velocity of the jet relative to the air as a vector in component form will be represented as u vector

c. The true velocity of the jet as a vector will be represented as w:


d. The true speed of the jet will be calculated as:




e. The direction of the jet will be:


