Distance , d = a+b

The unit of d is in meter and t is in seconds.
So the unit of a a must be meter.
Now we have unit of b

is meter.
So unit of b*

= meter
Unit of b = meter/

So unit of a = m and unit of b = m/

.
Answer:

Explanation:
given,
side slope = 1 : 1
hydraulic depth(y) = 5 ft
bottom width (b)= 8 ft
x = 1
Q = 2,312 ft³/s
n = 0.013
slope of channel = ?



R = 4.69 m
using manning's equation



S = 0.406

It is a chemical change and a physical change
A) See ray diagram in attachment (-6.0 cm)
By looking at the ray diagram, we see that the image is located approximately at a distance of 6-7 cm from the lens. This can be confirmed by using the lens equation:

where
q is the distance of the image from the lens
f = -10 cm is the focal length (negative for a diverging lens)
p = 15 cm is the distance of the object from the lens
Solving for q,


B) The image is upright
As we see from the ray diagram, the image is upright. This is also confirmed by the magnification equation:

where
are the size of the image and of the object, respectively.
Since q < 0 and p > o, we have that
, which means that the image is upright.
C) The image is virtual
As we see from the ray diagram, the image is on the same side of the object with respect to the lens: so, it is virtual.
This is also confirmed by the sign of q in the lens equation: since q < 0, it means that the image is virtual