His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
Answer:
A 100 N force acting on a lever 2 m from the fulcrum balances an object 0.5 m from the fulcrum on. ... What is the weight of the object(in newtons)? What is its mass (in kg)? ... mass at the one end and effort arm is the distance between pivot and effort applied at the other end.
Explanation:
hpoe this helps you.
Answer:
7.644 feet
Explanation:
Free fall means that an object is falling freely with no forces acting upon it except gravity, a defined constant, g = -9.8 m/s2. The distance the object falls, or height, h, is 1/2 gravity x the square of the time falling.
Answer:
The speed of the resistive force is 42.426 m/s
Explanation:
Given;
mass of skydiver, m = 75 kg
terminal velocity,
The resistive force on the skydiver is known as drag force.
Drag force is directly proportional to square of terminal velocity.
Where;
k is a constant
When the new drag force is half of the original drag force;
Therefore, the speed of the resistive force is 42.426 m/s
-- If the field were inclined to the surface, then it would have
some component parallel to the surface.
-- Then, since we're talking about a conductor, the charges
on the object would move in response to that component
of the field, until there was no longer any component of the
field trying to move them.