Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k
Answer:
9 terms. In carbon dioxide (CO2), there are two oxygen atoms for each carbon atom. Each oxygen atom forms a double bond with carbon, so the molecule is formed by two double bonds. Two double bonds means that the total number of electrons being shared in the molecule is.
Explanation:
Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The potential difference is 
The potential energy of the end is mathematically represented as

q is the charge on an electron with a constant value of 
substituting values


Now from the law of energy conservation
The 
Where
is the potential energy at the end
So

The negative sign is not includes because kinetic energy can not be negative