Answer:
T = 3.475 s
Time period is independent from mass
Explanation:
- To reduce the human error in taking any measurements we take multiple N number of readings. Then sum up all the readings and divide by N to find an average. The error between each individual reading and the actual reading is reduced by repetition.
- We use the plot of T^2 against L to form a linear relationship between two variables. We square the entire the equation for linearize the equation.
- Given, L = 3 m . The time period is approximated by a pendulum expression given as:
T = 2*pi*sqrt ( L / g )
Where, g is the gravitational acceleration 9.81 m/s^2
- Then we have:
T = 2*pi*sqrt ( 3 / 9.81 )
T = 3.475 s
- From above expression we see that time period is independent from the mass at the end of the string but a function of pendulum geometry and kinetics.
The words "... as shown ..." tell us that there's a picture that goes along
with this question, and you decided not to share it. That's sad and
disappointing, but I think the question can be answered without seeing
the picture.
The net force on the crate is zero. Evidence for this is that fact that
the crate is just sitting there. If the net force on an object is not zero,
then the object is accelerating ... it's either speeding up, slowing down,
or its the direction of its motion is changing. If none of these things is
happening, then the net force on the object must be zero.
<em>Class I .</em> . .
The fulcrum is between the effort and the load.
The mechanical advantage may be any positive number, more or less than ' 1 '.
<em>Class II .</em> . .
The load is between the fulcrum and the effort.
The mechanical advantage is always greater than ' 1 '.
<em>Class III .</em> . .
The effort is between the fulcrum and the load.
The mechanical advantage is always less than ' 1 '.
Answer:
In Metaphase 1 of meiosis, the chromosomes all line up in pairs in the middle