Answer:
196
Explanation:
subtract 24 from 220 to get your answer.
5-a). Acceleration is a vector defined as the rate of change of velocity.
Its magnitude has units of [length/time²]. The SI unit is meter/second².
Its direction is the direction in which velocity is increasing.
5-b). The graph says that the object's speed is not changing.
When we look at any time, from zero to almost 50 minutes, the
object's speed is the same . . . 60 m/s . This will make it easy.
There are 60 seconds in a minute, so 30 minutes = 1,800 seconds.
In every one of those seconds, the object covered 60 meters.
It travelled a total of (60 m/s)·(1,800 s) = 108,000 meters (108 km) .
The part of the atom that accounts for electricity is the electron. The correct option among all the options given in the question is option "D". Electrons are capable of moving from one atom to another very easily. The flow of the electrons is actually responsible for electricity to pass. When one electron starts moving in one direction, the other starts following it and this results in the flow of electricity.
Answer:
4.36 rad/s
Explanation:
Radius of platform r = 2.97 m
rotational inertia I = 358 kg·m^2
Initial angular speed w = 1.96 rad/s
Mass of student m = 69.5 kg
Rotational inertia of student at the rim = mr^2 = 69.5 x 2.97^2 = 613.05 kg.m^2
Therefore initial rotational momentum of system = w( Ip + Is)
= 1.96 x (358 + 613.05)
= 1903.258 kg.rad.m^2/s
When she walks to a radius of 1.06 m
I = mr^2 = 69.5 x 1.06^2 = 78.09 kg·m^2
Rotational momentuem of system = w(358 + 78.09) = 436.09w
Due to conservation of momentum, we equate both momenta
436.09w = 1903.258
w = 4.36 rad/s