Answer:
The torque about the origin is 
Explanation:
Torque
is the cross product between force
and vector position
respect a fixed point (in our case the origin):

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:
![\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]](https://tex.z-dn.net/?f=%20%5Coverrightarrow%7Br%7D%5Ctimes%5Coverrightarrow%7BF%7D%20%3D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Chat%7Bi%7D%20%26%20%5Chat%7Bj%7D%20%26%20%5Chat%7Bk%7D%5C%5C%20F1_%7Bx%7D%20%26%20F1_%7By%7D%20%26%20F1_%7Bz%7D%5C%5C%20r_%7Bx%7D%20%26%20r_%7By%7D%20%26%20r_%7Bz%7D%5Cend%7Barray%7D%5Cright%5D%20)



Answer:
false im just trying to get it if you'd like to give it to me
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]