Answer:
Resistance of the iron rod, R = 0.000077 ohms
Explanation:
It is given that,
Area of iron rod, 
Length of the rod, L = 35 cm = 0.35 m
Resistivity of Iron, 
We need to find the resistance of the iron rod. It is given by :



So, the resistance of the rod is 0.000077 ohms. Hence, this is the required solution.
A. 10 rations = 1 deca-ration.
b. 2000 mockingbirds = 2 x 10³ = 2 kilo-mockingbirds.
c. 10⁻⁵ phones = 1 micro-phones.
d. 10⁻⁹ goats = 1 nano-goats.
e. 1018 miners = 1.018 x 10³ = 1.018 kilo-miners.
Answer:
540C.
Explanation:
A capacitor of capacitance C when charged to a voltage of V will have a charge Q given as follows;
Q = CV ----------(i)
From the question, the initial charge on the capacitor is the charge on it before it was connected to the resistor. In other words, the initial charge on the capacitor will have a maximum value which can be calculated using equation (i) above.
Where;
C = 6F
V = 90V
Substitute these values into equation (i) as follows;
Q = 6 x 90
Q = 540 C
Therefore, the initial charge on the capacitor is 540C.
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
4.Use Ohm’s Law to determine the resistance in a circuit if the voltage is 12.0 volts and the current is 4.0 amps.
A. 8.0 ohms B. 48 ohms C. 3.0 ohms D. 12 ohms
Ohm's law is V=IR, or I=V/R, or R=V/I. (I= current, V= voltage, R= resistance.) Let's plug in our variables: V=12.0, I=4.0, R=? into the equation R=V/I. 12.0/4.0=3.0, so the resistance is 3.0 ohms.