(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Answer: It frees up valuable portions of the broadcast spectrum, it has better audio and picture quality, and there are more options on digital broadcasting
Explanation:
A = .3*g = 2.94 m/s²
<span>t = v/a = 9/2.94 = 3.061 sec </span>
<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
A elephant kicks a 5.0\,\text {kg}5.0kg5, point, 0, start text, k, g, end text stone with 150\,\text J150J150, start text, J, en
S_A_V [24]
The speed of the stone is 7.7 m/s
Explanation:
The kinetic energy of a body is the energy possessed by the body due to its motion. Mathematically,

where
m is the mass of the body
v is its speed
For the stone in this problem, we have:
K = 150 J is its kinetic energy
m = 5.0 kg is its mass
Re-arranging the equation for v, we find the speed of the stone:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly