The answer is D because when the positive charged side touches the negative charged side it nullifys part of the positively charged side, basically subtraction from my understanding?
Force between two charges is given by



Now in order to find the acceleration of each mass
we can use
F = ma

Answer:
(a) 17634.24 Ω
(b) 0.0068 A
Explanation:
(a)
The formula for inductive inductance is given as
X' = 2πFL................... Equation 1
Where X' = inductive reactance, F = frequency, L = inductance
Given: F = 60 Hz, L = 46.8 H, π = 3.14
Substitute into equation 1
X' = 2(3.14)(60)(46.8)
X' = 17634.24 Ω
(b)
From Ohm's law,
Vrms = X'Irms
Where Vrms = Rms Voltage, Irms = rms Current.
make Irms the subject of the equation
Irms = Vrms/X'...................... Equation 2
Given: Vrms = 120 V, X' = 17634.24 Ω
Substitute into equation 2
Irms = 120/17634.24
Irms = 0.0068 A
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.