The ball rises for v/g seconds; which equals 14.7/9.8=1.5 seconds . After this time, it’s height will be:
h(t)=g/2(1.5)²+14.7(1.5)
=-4.9 x 2.25 + 22.05
=11.025m
The ball then falls for 49+11.025=60.025m, which takes:
g/2t²=60.025
t²=12.25
t=3.5 secs
Total time: 1.5+3.5=5 seconds
Answer: Hence, the final temperature is 350 K
Explanation :
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
Putting values in above equation, we get:
Hence, the final temperature is 350 K
Amplitude: How dense the medium is in the compression part of the wave, and how empty the rarefied area is.
Frequency: The number of wavelengths that pass a position in 1 second.
loudness: The quality of the sound that is most closely linked to the amplitude of the sound wave.
Period: The amount of time that it takes one wavelength to pass by a position.
Pitch: The quality of the sound that is most closely linked to the frequency of the sound wave.
molecules of water are never destroyed - they go through various uses in a cycle of re-use. beginning in the ocean. a water molecue is attached to the wet suit of a deep sea diver. when the diver gets back on his boat, the water molecule leaves the ocean. Diver dry his suit under the sun. The water molecule is evaporated to the air. It meets up with more water molecules to form cloud. Cloud becomes rain over ground. Rain drains into stream which merges into river. River runs out to the ocean and the water cycle starts anew.