The answer is A. When the forces are weaker, they will not be able to hold the particles of the substances together; therefore, the substance will be observed as being volatile.
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
Answer:
5.619×10⁶ N
Explanation:
Applying,
F = kqq'/r²................... Equation 1
Where F = electrostatic force between the charges, k = coulomb's constant, q = first charge, q' = second charge, r = distance btween the charges
From the questiion,
Given: q = 2.5 C, q' = 2.5 C, r = 100 m
Constant: 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.5×2.5×8.99×10⁹)/100²
F = 56.19×10⁵
F = 5.619×10⁶ N
The refractive index of water is

. This means that the speed of the light in the water is:

The relationship between frequency f and wavelength

of a wave is given by:

where v is the speed of the wave in the medium. The frequency of the light does not change when it moves from one medium to the other one, so we can compute the ratio between the wavelength of the light in water

to that in air

as

where v is the speed of light in water and c is the speed of light in air. Re-arranging this formula and by using

, we find

which is the wavelength of light in water.