Answer:
r = 2.031 x 10⁶ m = 2031 km
Explanation:
In order for the asteroid to orbit the planet, the centripetal force must be equal to the gravitational force between asteroid and planet:
Centripetal Force = Gravitational Force
mv²/r = GmM/r²
v² = GM/r
r = GM/v²
where,
r = radial distance = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Planet = 3.52 x 10¹³ kg
v = tangential speed = 0.034 m/s
Therefore,
r = (6.67 x 10⁻¹¹ N.m²/kg²)(3.52 x 10¹³ kg)/(0.034 m/s)²
<u>r = 2.031 x 10⁶ m = 2031 km</u>
Nice couch lol
and aluminum I think
Answer:bill 5 m/s. Jack:10 m/s
Explanation:
Cuz I took it
Answer:
Newton's second law of motion
Explanation:
Newton's second law of motion can be stated
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
in another form,
Force = mass * acceleration
That would be Cyanide.
Hope this helps! (: