Idk can u say it in a another way
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Answer:
0.17547 m
Explanation:
m = Mass of block = 
v = Velocity of block = 10.8 m/s
k = Spring constant = 125 N/m
A = Amplitude
The kinetic energy of the system is conserved

The amplitude of the resulting simple harmonic motion is 0.17547 m
Answer:
391.5 J
Explanation:
The amount of work done can be calculated using the formula:
- W = F║d
- where the force is parallel to the displacement
Looking at the formula, we can see that the mass of the object does not affect the work done on it.
Substitute the force applied and the displacement of the object into the equation.
- W = (87 N)(4.5 m)
- W = 391.5 J
The amount of work done on the object is 391.5 J in order to move it 4.5 meters with an applied force of 87 Newtons.