1)
<span>m(NaCl) = 1.95 g
V(H2O) = 250mL
M(NaCl) = </span><span>58.5 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
</span>V(H2O) = 250ml = 250g = 0.25 kg<span>
</span><span>molality of NaCl:
</span><span>
n(NaCl)=m/M=1.95/58.5= 0.033 mole
</span>molality b(NaCl)=n(NaCl) / V (H2O)= 0.033/0.25 = 0.132 mol/kg
<span>
milimolality of NaOH = 0.132/0,001 = 132 mmole/kg
</span>
milliosmolality of NaOH = milimolality x N of ions formed in dissociation
Since NaCl dissociates into 2 ions in solution:
<span>
</span>milliosmolality of NaOH = 132 x 2 = 264 osmol<span>es/kg
</span>
2)
m(gl) = 9 g
V(H2O) = 250mL
M(NaCl) = 180 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
V(H2O) = 250ml = 250g = 0.25 kg
molality of glucose:
n(gl)=m/M=9/180= 0.05 mole
molality b(gl)=n(gl) / V (H2O)= 0.05/0.25 = 0.2 mol/kg
milimolality of glucose = 0.132/0,001 = 200 mmole/kg
milliosmolality of glucose = milimolality x N of ions formed in dissociation
Since glucose does not dissociate, milimolality and milliosmolality are same:
milliosmolality of glucose = 200 osmoles/kg
3)
The osmosis represents the diffusion of solvent molecules through a semi-permeable membrane that allows passage solvent molecules but does not to the dissolved substance molecule. The osmosis occurs when the concentrations of the solution on both sides of the membrane are different. Since the semi-permeable membrane only permeates the solvent molecules, but not the particles of the dissolved substance, it occurs the solvent diffusion through the membrane, i.e. the solvent molecules pass through the membrane to equalize the concentration on both sides of the membrane. Solvents molecules move from the middle with a lower concentration in the middle with a higher concentration of dissolved substances.
In our case, osmosis will occur because the concentration of NaCl solution and the concentration of glucose solution do not have same values. Osmosis will occur in the direction of glucose solution because it has a lower concentration.
I believe the correct answer from the choices listed above is option B. A chemical formula written above or below the yield sign indicates <span>that the substance is used as a catalyst. I am certain with this answer. Hope this helps. Have a nice day.</span>
Bc an MRI is just a scanner it's not and never will be meant for treatment
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
Answer:
Mass of 205 mL of the liquid is 164 g
Explanation:
We know, 
Here density of liquid is 0.798 g/mL and volume of liquid is 205 mL
So, mass of liquid = 
= 
= 164 g
hence mass of 205 mL of the liquid is 164 g.