Absorbed photon energy
Ea = hc/λ.. (Planck's equation)
Ea = hc / 92.05^-9m
<span>Energy emitted
Ee = hc/ 1736^-9m </span>
Energy retained ..
∆E = Ea - Ee = hc(1/92.05<span>^-9 - 1/1736^-9) </span>
<span>∆E = (6.625^-34)(3.0^8) (1.028^7)
∆E = 2.04^-18 J </span>
<span>Converting J to eV (1.60^-19 J/eV)
∆E = 2.04^-18 / 1.60^-19
∆E = 12.70 eV </span>
<span>Ground state (n=1) energy for Hydrogen = - 13.60eV </span>
<span>New energy state = (-13.60 + 12.70)eV = -0.85 eV </span>
<span>Energy states for Hydrogen
En = - (13.60 / n²) </span>
n² = -13.60 / -0.85 = 16
n = 4
<span>Express the answer in scientific notation and with the correct number of significant figures:
(6.32 x 10-4) ÷ 12.64
5.00 x 10^-5</span>
You have to think about the fact that hot air is constantly being blown up elevating the balloon once that air is taken away it's up to the steering and the wind after that. I know that probably doesn't help did you want to know the science part?
2H₂₍g₎ + O₂ ₍g₎→ 2H₂O
138 mol H₂ × (2 mol H₂O ÷ 2 mol H₂)= 138 mol H₂O
64 mol O₂ × (2 mol H₂O ÷ 1 mol O₂)= 128 mol H₂O
128 mol H₂O
Answer:
Explanation:
so if the reaction is C2H4+3O2-->2H2O+2CO2
if there were 7 moles of C2H4:
(see the attachment)