Answer:
(1) wean yourself of disposable plastics. and(2) stop
buing water
First, we determine the energy released by the reaction using the heat capacity and change in temperature as such:
Q = cΔT
Q = 32.16 * 0.42
Q = 13.51 kJ
Next, we determine the moles of ammonia formed as the heat of formation is expressed in "per mole".
Moles = mass / molecular weight
Moles = 5/17
Moles = 0.294
Heat of formation = 13.51 / 0.294
The heat of formation of ammonia is 45.95 kJ/mol
Answer:
Explanation:
we know that
ΔH=m C ΔT
where ΔH is the change in enthalpy (j)
m is the mass of the given substance which is water in this case
ΔT IS the change in temperature and c is the specific heat constant
we know that given mass=2.9 g
ΔT=T2-T1 =98.9 °C-23.9°C=75°C
specific heat constant for water is 4.18 j/g°C
therefore ΔH=2.9 g*4.18 j/g°C*75°C
ΔH=909.15 j
D. Pentane. Pentane has 5 Carbon and 12 Hydrogen, like the molecule shown.
Explanation:
The sum of total number of protons present in an element is known as atomic number of the element.
- As atomic number of Cs is 55.
And, it is known that for a neutral atom the number of protons equal to the number of electrons.
Since, no charge in present on given Cs atom it means that it is neutral in nature. Hence, number of protons and electrons present in Cs are 55.
- For Ba, it is also neutral in nature and atomic number of barium is 56. Hence, number of protons and electrons present in Ba are 56.
- For S, there is no charge on it so it is also neutral in nature. Atomic number of S is 16. Hence, number of protons and electrons present in S are 16.