Answer:
Point motion will eventually stops due to action of g exactly perpendicular...
Explanation:
If ignoring the air resistance, the magnitude of gravitational acceleration is already strong enough to stops the acceleration. As we know that, the spring constant of a bungee spring cord will be F = -k/x, where x is the stretched length and k is the spring constant of bungee cord. If F = ma = w = mg, the g = -m k/x. Now we can clearly see that the value of g remains constant due to the fluctuating length of the cord as the motion progresses back and forth in SHM say from x1 to x2 and x2 to x1.
Answer:
final kinetic energy of the hammer is 10 kJ
Explanation:
As we know that there is no non conservative force on the system
So here we can use the theory of mechanical energy conservation
So we will have

here we know that

from above expression now


so final kinetic energy of the hammer is 10 kJ
Answer:
- Particles smaller than atoms are called subatomic particles .
- There are three famous subatomic particles, proton, neutron and electron .
- The study of sub atomic particles are called particle physics
- These particles can be divided as Brayons and Leptons
- These particles are often held together by one of the four fundamental particles ( Weak force, strong force, electromagnetic force, gravitational force).
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance: