It's called texture, meaning how something feels.
Answer:
900 cm/s or 9 m/s.
Explanation:
Data obtained from the question include the following:
Length (L) = 30 cm
frequency (f) = 60 Hz
Velocity (v) =.?
Next, we shall determine the wavelength (λ).
This is illustrated below:
Since the wave have 4 node, the wavelength of the wave will be:
λ = 2L/4
Length (L) = 30 cm
wavelength (λ) =.?
λ = 2L/4
λ = 2×30/4
λ = 60/4
λ = 15 cm
Therefore, the wavelength (λ) is 15 cm
Now, we can obtain the speed of the wave as follow:
wavelength (λ) = 15 cm
frequency (f) = 60 Hz
Velocity (v) =.?
v = λf
v = 15 × 60
v = 900 cm/s
Thus, converting 900 cm/s to m/s
We have:
100 cm/s = 1 m/s
900 cm/s = 900/100 = 9 m/s
Therefore, the speed of the wave is 900 cm/s or 9 m/s.
Answer:
Explanation:
In this case, law of conservation of energy will be implemented. It states that "the energy of the system remains conserved until or unless some external force act on it. Energy of the system may went through the conversion process like kinetic energy into potential and potential into kinetic energy.But their total always remain the same in conserved systems."
Given data:
Height of tower = 10.0 m
Depth of the pool = 3.00 cm
Mass of person = 61.0 kg
Solution:
Initial energy = Final energy

As the person was at height initially so it has the potential energy only.



Lets find out the magnitude of the force that the water is exerting on the diver.
W =ΔK.E


F = 1992.67 N
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4