I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Answer:
Phenols do not exhibit the same pka values as other alcohols;
They are generally more acidic.
Using the knowledge that hydrogen acidity is directly related to the stability of the anion formed, explain why phenol is more acidic than cyclohexane.
Explanation:
According to Bromsted=Lowry acid-base theory,
an acid is a substance that can release
ions when dissolved in water.
So, acid is a proton donor.
If the conjugate base of an acid is more stable then, that acid is a strong acid.
In the case of phenol,
the phenoxide ion formed is stabilized by resonance.

The resonance in phenoxide ion is shown below:
Whereas in the case of cyclohexanol resonance is not possible.
So, cyclohexanol is a weak acid compared to phenol.
Mass of Co(NO₃)₂ = 1.95 g
V KOH = 0.350 L
[KOH] = 0.220 M
Kf = 5.0 x 10⁹
molar mass of Co(NO₃)₂ = 182.943 g/mol
so [Co(NO₃)₂] = 1.95 / (0.350 * 182.943) = 0.03045 M
[Co²⁺] = 0.03045 M
[OH⁻] = 0.22 M
chemical reaction:
Co²⁺(aq) + 4 OH⁻ ⇄ Co(OH)₄²⁻
I (M) 0.03045 0.22 0
C (M) - 0.03045 - 4 (0.03045) 0.03045
E (M) - x 0.22 - 4(0.03045) 0.03045
= 0.0982
Kf = [Co(OH)₄²⁻] / [Co⁺²][OH⁻]⁴
5.0 x 10⁹ = (0.03045) / x (0.0982)⁴
x = 6.5489 x 10⁻⁸
at equilibrium:
[Co²⁺] = 6.54 x 10⁻⁸
[OH⁻] = 0.0982 M
[Co(OH)₄²⁻] = 0.03045 M
there are 8 planets in our solar system 1.Mercury 2.venus 3.earth 4.mars 5.jupiter 6.saturn 7.uranus 8. neptune
Answer:
to show that atoms are conserved in chemical reactions
Explanation: