IT is called Iron(iii)oxide
when the thermal energy is the energy contained within a system that is responsible for its temperature.
and when the thermal energy is can be determined by this formula:
q = M * C *ΔT
when q is the thermal energy
and M is the mass of water = 100 g
and C is the specific heat capacity of water = 4.18 joules/gram.°C
and T is the difference in Temperature = 50 °C
So by substitution:
∴ q = 100 g * 4.18 J/g.°C * 50
= 20900 J = 20.9 KJ
Answer:
Explanation:
In a reaction, where, one of the reactant produces a colored product, visible spectroscopy can be used to determined the order of a reaction, the change in concentration of the reactant which forms the colored product is determined by absorbance measurement over time. The data for the concentration and time are plotted on the y and x axis and If we get a straight line it is a zero-order reaction. If instead, a plot of ln[concentration] versus time gives a straight line, it is a first order reaction. However, If 1/concentration versus time gives a straight line, it is a second order reaction kinetics. The other reactants may be changed while keeping this reactant as constant and change on rate of the reaction is observed to see If the other reactant affects the reaction or not.
B. Heating up the reaction will increase the entropy of a reaction.
<h3>
What is entropy?</h3>
Entropy is the measure of the degree of disorderliness of a system.
Entropy is also the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
S = ΔH/T
where;
- S is entropy
- ΔH is energy input
- T is temperature
Entropy increases in reactions in which the total number of product molecules is greater than the total number of reactant molecules.
However, entropy increases as temperature increases. Thus, heating up the reaction will increase the entropy of a reaction.
Learn more about entropy here: brainly.com/question/6364271
#SPJ1