Answer:
Mg(s) +<em> 2</em> HCl (aq) → H₂(g) + MgCl₂
0.415g of H₂(g) <em>-Assuming mass of Mg(s) = 10.0g-</em>
Explanation:
Balancing the reaction:
Mg(s) + HCl (aq) → H₂(g) + MgCl₂
There are in products two atoms of H and Cl, the balancing equation is:
Mg(s) +<em> 2</em> HCl (aq) → H₂(g) + MgCl₂
<em>Assuming you add 10g of Mg(s) -Limiting reactant-</em>
<em />
10g of Mg are (Atomic mass: 24.305g/mol):
10g × (1 mol / 24.305g) = <em>0.411 moles of Mg</em>
<em>-Theoretical yield is the amount of product you would have after a chemical reaction occurs completely-</em>
Assuming theoretical yield, as 1 mole of Mg(s) produce 1 mole of H₂(g), theoretical yield of H₂(g) is 0.411moles H₂(g). In grams:
0.411mol H₂(g) × (1.01g / mol) = <em>0.415g of H₂(g)</em>
The elements of group 1 makes ionic bond with the elements of group 7 due to high difference of electronegativity values.
<h3>Type of bond between group 1 and 7</h3>
The elements of first group lose its one outermost electrons while on the other hand, the elements of seven group needs one electron so they gain that one electron so they make an ionic bond with each other.
So we can conclude that the elements of group 1 makes ionic bond with the elements of group 7 because of the high difference of electronegativity values.
Learn more about electronegativity here: brainly.com/question/2415812
Answer:
Water has polar O-H bonds. The negative O atoms attract the positive H atoms in nearby molecules, leading to the unusually strong type of dipole-dipole force called a hydrogen bond. Since water has hydrogen bonds, it also has dipole-induced dipole and London dispersion forces.
Hope it helped!!
It cites valid data because a reliable scientific source needs data to back up what they’re proving.