The right answer for the question that is being asked and shown above is that: "d. does not produce energy in nuclear power plants." The model most likely represents a reaction which d. does not produce energy in nuclear power plants<span>
</span>
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
Answer:
x-10 should be the answer
The volume of oxygen at STP required would be 252.0 mL.
<h3>Stoichiometic problem</h3>
The equation for the complete combustion of C2H2 is as below:

The mole ratio of C2H2 to O2 is 2:5.
1 mole of a gas at STP is 22.4 L.
At STP, 100.50 mL of C2H2 will be:
100.50 x 1/22400 = 0.0045 mole
Equivalent mole of O2 according to the balanced equation = 5/2 x 0.0045 = 0.01125 moles
0.01125 moles of O2 at STP = 0.01125 x 22400 = 252.0 mL
Thus, 252.0 mL of O2 gas will be required at STP.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
Light can be reflected, transmitted, or absorbed. You have read that EM waves can interact with a material medium in the same ways that mechanical waves do.
Explanation: