Answer : C
Because $6.65 multiplied by 4 hours equals $26.60
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl
Molecules with a plane of symmetry between the chiral centers are achiral and meso. From the given molecules (Picture attached) only (A) compound 1 is meso.
When compounds possess a plane of symmetry between the chiral centers they are called achiral or meso compounds. Among the given compounds (A) compound 1 have a plane of symmetry. So we can say compound one is a meso or achiral compound. Compounds two, three, and four have no plane of symmetry, as you can see in the structures attached. So all other compounds (compound 2, compound 3, and compound 4) except compound one are not meso or achiral.
You can also learn about meso compounds from the following question:
brainly.com/question/29022658
#SPJ4
Answer:
d. Two moles of carbon dioxide were produced from this reaction
Explanation:
The given chemical reaction can be written as follows;
2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O
From the above chemical reaction, we have;
Two moles of C₂H₂ reacts with five moles of O₂ to produce four moles of CO₂ and two moles of H₂O
We have;
One mole of C₂H₂ will react with two and half moles of O₂ to produce <em>two moles of CO₂</em> and one mole of H₂O
Therefore, in the above reaction, when one mole of C₂H₂ is used, two moles of CO₂ will be produced.
Answer:
10425 J are required
Explanation:
assuming that the water is entirely at liquid state at the beginning , the amount required is
Q= m*c*(T final - T initial)
where
m= mass of water = 25 g
T final = final temperature of water = 100°C
T initial= initial temperature of water = 0°C
c= specific heat capacities of water = 1 cal /g°C= 4.186 J/g°C ( we assume that is constant during the entire temperature range)
Q= heat required
therefore
Q= m*c*(T final - T initial)= 25 g * 4.186 J/g°C * (100°C- 0°C) = 10425 J
thus 10425 J are required