Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
So you have evidence that the experiment is true or correct.
An acid is a proton donor
Answer:
12.0108408
Explanation:
Denote the element with a letter like say X. Since it has a subscript of 5, then, X5.
Molecular mass=102.133g/mol.
% of X in compound =58.8/100
=0.588
Mass of X in the compound = 0.588*102.133 ( the % of X in compound * molar mass of compound)
= 60.054204
X5=60.054204
Then element X has a mass of 60.054204/5=12.0108408
Answer:
Gas state
Explanation:
Gas particles spread out to fill a container evenly, unlike solids and liquids.