Answer:
(a) the electrical power generated for still summer day is 1013.032 W
(b)the electrical power generated for a breezy winter day is 1270.763 W
Explanation:
Given;
Area of panel = 2 m × 4 m, = 8m²
solar flux GS = 700 W/m²
absorptivity of the panel, αS = 0.83
efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp
panel emissivity , ε = 0.90
Apply energy balance equation to determine he electrical power generated;
transferred energy + generated energy = 0
(radiation + convection) + generated energy = 0
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%5Ceta%20%5Calpha_s%20G_s%20%3D%200)
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%280.553-0.001T_p%29%5Calpha_s%20G_s)
(a) the electrical power generated for still summer day
![T_s = T_{\infty} = 35 ^oC = 308 \ k](https://tex.z-dn.net/?f=T_s%20%3D%20T_%7B%5Cinfty%7D%20%3D%2035%20%5EoC%20%3D%20308%20%5C%20k)
![[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_1%5E4-308%5E4%29%5D-10%28T_p_1-308%29%20-%20%280.553-0.001T_p_1%290.83%2A700%20%3D%200%5C%5C%5C%5C3798.94-5.103%2A10%5E%7B-8%7DT_p_1%5E4%20-%209.419T_p_1%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_1%5C%5C%5C%5CT_p_1%20%3D%20335.05%20%5C%20k)
![P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W](https://tex.z-dn.net/?f=P%20%3D%20%5Ceta%20%5Calpha_s%20G_s%20A%20%3D%20%280.553-0.001%20T_p_1%29%5Calpha_s%20G_s%20A%20%5C%5C%5C%5CP%20%3D%20%280.553-0.001%20%2A335.05%290.83%2A700%2A8%20%5C%5C%5C%5CP%20%3D%201013.032%20%5C%20W)
(b)the electrical power generated for a breezy winter day
![T_s = T_{\infty} = -15 ^oC = 258 \ k](https://tex.z-dn.net/?f=T_s%20%3D%20T_%7B%5Cinfty%7D%20%3D%20-15%20%5EoC%20%3D%20258%20%5C%20k)
![[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_2%5E4-258%5E4%29%5D-10%28T_p_2-258%29%20-%20%280.553-0.001T_p_2%290.83%2A700%20%3D%200%5C%5C%5C%5C8225.81-5.103%2A10%5E%7B-8%7DT_p_2%5E4%20-%2029.419T_p_2%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_2%5C%5C%5C%5CT_p_2%20%3D%20279.6%20%5C%20k)
![P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W](https://tex.z-dn.net/?f=P%20%3D%20%5Ceta%20%5Calpha_s%20G_s%20A%20%3D%20%280.553-0.001%20T_p_2%29%5Calpha_s%20G_s%20A%20%5C%5C%5C%5CP%20%3D%20%280.553-0.001%20%2A279.6%290.83%2A700%2A8%20%5C%5C%5C%5CP%20%3D%201270.763%20%5C%20W)